Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 15(8): 1188-1195, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308711

RESUMO

Terpenoids account for more than 60% of all natural products, and their carbon skeletons originate from common isoprenoid units of different lengths such as geranyl pyrophosphate and farnesyl pyrophosphate. Here we characterize a metal-dependent, bifunctional isoprenyl diphosphate synthase from the leaf beetle Phaedon cochleariae by structural and functional analyses. Inter- and intramolecular cooperative effects in the homodimer strongly depend on the provided metal ions and regulate the biosynthetic flux of terpene precursors to either biological defence or physiological development. Strikingly, a unique chain length determination domain adapts to form geranyl or farnesyl pyrophosphate by altering enzyme symmetry and ligand affinity between both subunits. In addition, we identify an allosteric geranyl-pyrophosphate-specific binding site that shares similarity with end-product inhibition in human farnesyl pyrophosphate synthase. Our combined findings elucidate a deeply intertwined reaction mechanism in the P. cochleariae isoprenyl diphosphate synthase that integrates substrate, product and metal-ion concentrations to harness its dynamic potential.


Assuntos
Difosfatos , Terpenos , Humanos , Terpenos/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo
3.
Org Biomol Chem ; 16(3): 348-362, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29296983

RESUMO

The enormous diversity of terpenes found in nature is generated by enzymes known as terpene synthases, or cyclases. Some are also known for their ability to convert a single substrate into multiple products. This review comprises monoterpene and sesquiterpene synthases that are multiproduct in nature along with the regulation factors that can alter the product specificity of multiproduct terpene synthases without genetic mutations. Variations in specific assay conditions with focus on shifts in product specificity based on change in metal cofactors, assay pH and substrate geometry are described. Alterations in these simple cellular conditions provide the organism with enhanced chemodiversity without investing into new enzymatic architecture. This versatility to modulate product diversity grants organisms, especially immobile ones like plants with access to an enhanced defensive repertoire by simply altering cofactors, pH level and substrate geometry.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Terpenos/metabolismo
4.
Molecules ; 22(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182588

RESUMO

We describe the synthesis, reactivity, and antithrombotic and anti-angiogenesis activity of difluoroallicin (S-(2-fluoroallyl) 2-fluoroprop-2-ene-1-sulfinothioate) and S-2-fluoro-2-propenyl-l-cysteine, both easily prepared from commercially available 3-chloro-2-fluoroprop-1-ene, as well as the synthesis of 1,2-bis(2-fluoroallyl)disulfane, 5-fluoro-3-(1-fluorovinyl)-3,4-dihydro-1,2-dithiin, trifluoroajoene ((E,Z)-1-(2-fluoro-3-((2-fluoroallyl)sulfinyl)prop-1-en-1-yl)-2-(2-fluoroallyl)disulfane), and a bis(2-fluoroallyl)polysulfane mixture. All tested organosulfur compounds demonstrated effective inhibition of either FGF or VEG-mediated angiogenesis (anti-angiogenesis activity) in the chick chorioallantoic membrane (CAM) or the mouse Matrigel® models. No embryo mortality was observed. Difluoroallicin demonstrated greater inhibition (p < 0.01) versus organosulfur compounds tested. Difluoroallicin demonstrated dose-dependent inhibition of angiogenesis in the mouse Matrigel® model, with maximal inhibition at 0.01 mg/implant. Allicin and difluoroallicin showed an effective antiplatelet effect in suppressing platelet aggregation compared to other organosulfur compounds tested. In platelet/fibrin clotting (anti-coagulant activity), difluoroallicin showed concentration-dependent inhibition of clot strength compared to allicin and the other organosulfur compounds tested.


Assuntos
Alho/química , Compostos Orgânicos/química , Compostos Orgânicos/farmacologia , Compostos de Enxofre/química , Compostos de Enxofre/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Relação Dose-Resposta a Droga , Fibrinolíticos/síntese química , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Halogenação , Camundongos , Modelos Moleculares , Conformação Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Compostos Orgânicos/síntese química , Compostos de Enxofre/síntese química
5.
J Org Chem ; 82(6): 2855-2861, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28195730

RESUMO

Promiscuity of terpene synthases results in the enormous diversity of terpenes found in nature. Multiproduct sesquiterpene synthase MtTPS5 isolated from Medicago truncatula generates 27 optically pure products from its natural substrate (2E,6E)-farnesyl diphosphate (FDP). In order to study the promiscuity of MtTPS5, (2Z,6E)-FDP, an analogue of presumptive reaction intermediates from natural reaction cascade, was utilized as a substrate. This stereoisomer induced a novel cyclization pathway leading to sesquiterpenes based on humulane, amorphene, and himachalane skeletons. Interestingly, none of these products matched those observed on incubation of MtTPS5 with natural (2E,6E)-FDP. Further determination of the absolute configuration of each product helped rebuild the stereochemical route of the reaction cascade. Interestingly, the presence of only one enantiomer of each product was observed, indicating the highly stereospecific nature of the enzymatic reaction. Substrate promiscuity of terpene synthases provides organism access to novel chemical bouquets of high optical purity by utilizing existing enzymes. The presence of this mechanism was indicated by the presence of these alternate products in natural herbivore-induced volatiles of M. truncatula.


Assuntos
Alquil e Aril Transferases/química , Medicago truncatula/enzimologia , Cromatografia Gasosa , Ciclização , Isomerismo , Análise Espectral/métodos , Especificidade por Substrato
6.
Chembiochem ; 17(18): 1738-51, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27383291

RESUMO

Trifluoroselenomethionine (TFSeM), a new unnatural amino acid, was synthesized in seven steps from N-(tert-butoxycarbonyl)-l-aspartic acid tert-butyl ester. TFSeM shows enhanced methioninase-induced cytotoxicity, relative to selenomethionine (SeM), toward HCT-116 cells derived from human colon cancer. Mechanistic explanations for this enhanced activity are computationally and experimentally examined. Comparison of TFSeM and SeM by selenium EXAFS and DFT calculations showed them to be spectroscopically and structurally very similar. Nonetheless, when two different variants of the protein GB1 were expressed in an Escherichia coli methionine auxotroph cell line in the presence of TFSeM and methionine (Met) in a 9:1 molar ratio, it was found that, surprisingly, 85 % of the proteins contained SeM residues, even though no SeM had been added, thus implying loss of the trifluoromethyl group from TFSeM. The transformation of TFSeM into SeM is enzymatically catalyzed by E. coli extracts, but TFSeM is not a substrate of E. coli methionine adenosyltransferase.


Assuntos
Aminoácidos/química , Selenometionina/análogos & derivados , Aminoácidos/síntese química , Aminoácidos/farmacologia , Liases de Carbono-Enxofre/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Selenometionina/síntese química , Selenometionina/química , Selenometionina/farmacologia , Relação Estrutura-Atividade
7.
Org Biomol Chem ; 13(21): 6021-30, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25940560

RESUMO

Multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from maize (Zea mays) catalyze the conversion of farnesyl diphosphate (FDP) and geranyl diphosphate (GDP) into a complex mixture of sesquiterpenes and monoterpenes, respectively. Various isotopic and geometric isomers of natural substrates like (2Z)-[2-(2)H]- and [2,4,4,9,9,9-(2)H6]-(GDP) and (2Z,6E)-[2-(2)H]- and [2,4,4,13,13,13-(2)H6]-(FDP) were synthesized analogous to presumptive reaction intermediates. On incubation with labeled (2Z) substrates, TPS4 and TPS5 showed much lower kinetic isotope effects than the labeled (2E) substrates. Interestingly, the products arising from the deuterated (2Z)-precursors revealed a distinct preference for cyclic products and exhibited an enhanced turnover on comparison with natural (2E)-substrates. This increase in the efficiency due to (2Z) configuration emphasizes the rate limiting effect of the initial (2E) → (2Z) isomerization step in the reaction cascade of the multiproduct terpene synthases. Apart from turnover advantages, these results suggest that substrate geometry can be used as a tool to optimize the biosynthetic reaction cascade towards valuable cyclic terpenoids.


Assuntos
Alquil e Aril Transferases/metabolismo , Monoterpenos/metabolismo , Sesquiterpenos/metabolismo , Zea mays/enzimologia , Ciclização , Difosfatos/química , Difosfatos/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Monoterpenos/química , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/química , Estereoisomerismo , Especificidade por Substrato , Zea mays/química , Zea mays/metabolismo
8.
Org Biomol Chem ; 13(16): 4776-84, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25807032

RESUMO

The multiproduct sesquiterpene synthase MtTPS5 from Medicago truncatula catalyzes the conversion of farnesyl diphosphate (FDP) into a complex mixture of 27 terpenoids. 3-Bromo substrate analogues of geranyl diphosphate (3-BrGDP) and farnesyl diphosphate (3-BrFDP) were evaluated as substrates of MTPS5 enzyme. Kinetic studies demonstrated that these compounds were highly potent competitive inhibitors of the MtTPS5 enzyme with fast binding and slow reversibility. Since there is a lack of knowledge about the crystal structure of multiproduct terpene synthases, these molecules might be ideal candidates for obtaining a co-crystal structure with multiproduct terpene synthases. Due to the structural and mechanistic similarity between various terpene synthases we expect these 3-bromo isoprenoids to be ideal probes for crystal structure studies.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Difosfatos/química , Medicago truncatula/química , Fosfatos/síntese química , Terpenos/química , Alquil e Aril Transferases/química , Aspergillus/enzimologia , Ligação Competitiva , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Isomerases/química , Cinética , Conformação Molecular , Fosfatos/química , Fosfatos de Poli-Isoprenil/química , Prenilação , Sesquiterpenos/química , Especificidade por Substrato
9.
Chem Commun (Camb) ; 51(18): 3797-800, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25658388

RESUMO

Multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from Zea mays exhibit isotopically sensitive branching in the formation of mono- and sesquiterpene volatiles. The impact of the kinetic isotope effects and the stabilization of the reactive intermediates by hyperconjugation along with the shift of products from alkenes to alcohols are discussed.


Assuntos
Alquil e Aril Transferases/química , Deutério/química , Difosfatos/química , Diterpenos/química , Proteínas de Plantas/química , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/química , Zea mays/enzimologia , Cinética
10.
J Agric Food Chem ; 58(2): 1121-8, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20047275

RESUMO

Lachrymatory (Z)-butanethial S-oxide along with several 1-butenyl thiosulfinates was detected by DART mass spectrometry upon cutting Allium siculum , a popular ornamental Allium species used in some cultures as a spice. (Z)-Butanethial S-oxide isolated from the plant was shown to be identical to a synthetic sample. Its likely precursor, (R(S),R(C),E)-S-(1-butenyl)cysteine S-oxide (homoisoalliin), was isolated from homogenates of A. siculum, and a closely related species Allium tripedale , and fully characterized. Through use of LC-MS, a series of related gamma-glutamyl derivatives were tentatively identified in A. siculum and A. tripedale homogenates, including gamma-glutamyl-(E)-S-(1-butenyl)cysteine and its S-oxide, gamma-glutamyl-S-butylcysteine and its S-oxide, and gamma-glutamyl-S-methylcysteine and its S-oxide. Because compounds containing the 1-butenyl group have not been previously identified in genus Allium species, this work extends the range of known Allium sulfur compounds. The general applicability of DART mass spectrometry in identifying naturally occurring, thermally fragile thial S-oxides and thiosulfinates is illustrated with onion, Allium cepa , as well as a plant from a different genus, Petiveria alliacea .


Assuntos
Allium/química , Espectrometria de Massas/métodos , Óxidos/química , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...